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This article proposes a special case of a two-echelon location-
routing problem (2E-LRP) in the cash-in-transit (CIT) sector. To 
tackle this realistic problem and make the model applicable, a rich 
LRP is presented considering several existing real-life variants and 
characteristics named BO-2E-PCLRPSD-TW, including different 
objective functions, multiple echelons, multiple periods, capacitated 
vehicles, distribution centers and automated teller machines (ATMs), 
different types of vehicles in each echelon, and single-depot with 
different time windows. Since routing plans in the CIT sector ought to 
be safe and efficient, the minimization of total transportation risk and 
cost are considered simultaneously as objective functions. Then, such 
a complex problem is formulated in mathematical mixed integer 
linear programming (MMILP). To validate the presented model and 
the formulation and to solve the problem, the latest version of ε-
constraint method namely AUGMECON2 is applied. This method is 
specially efficient for solving multi-objective integer programing 
(MOIP) problems and provides the exact Pareto fronts. Results 
substantiate the suitability of the model and the formulation. 
. 
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1. Introduction1 
The two-echelon location-routing problem (2E-
LRP) is a particular case of multi-echelon 
systems where the network is composed of two 
echelons. In such problems, typically, freight is 
delivered to the destinations moving mandatory 
through intermediate facilities and after taking 
place of operations such as storage or 
integration. The 2E-LRP involves both 
strategic planning decisions (e.g., number and 
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location of facilities) and tactical planning 
decisions (e.g., customer allocation to the 
intermediate facilities and routing). Thus, a 
proper location of facilities as well as optimum 
allocation of customers to these facilities 
alongside suitable routing can considerably 
reduce the traffic congestion, decrease cost, 
and increase security of transportation[1]. 
Among all types of commodities, banknotes 
and coins are crucial in our daily lives. Physical 
currency, despite the sharp usage of electronic 
payment mechanism, is still the most widely 
used payment mechanism and is expected to 
preserve its supremacy in the near future [2]. 
Besides, transportation of this type of 
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commodities is exposed always to high risk 
such as robbery. Hence, currency distribution is 
of great challenges for Banks’ managers and 
CIT (cash-in-transit) companies to satisfy the 
needed amount of cash for bank branches 
and/or automated teller machines (ATMs) with 
the minimum traveled cost and risk.  
Many papers have considered the location-
routing problem (LRP) in different echelons; 
however, the number of researches that 
considered the issue of risk in the LRP is few. 
However, a real-world problem such as cash 
distribution usually includes many constraints 
and assumptions requiring a complete 
mathematical modelling. Moreover, in real-life 
LRPs, usually decision-makers (DMs) have to 
cope with different objectives concurrently. 
Hence, the main aim of this paper is to propose 
a special case of 2E-LRP in a CIT sector with 
multiple periods, multiple capacitate vehicles 
with time windows, and different objective 
functions in order to make it applicable to real-
life problems. Then, to solve such a rich and 
complex problem, at first, a mathematical 
mixed integer linear programming (MMILP) 
formulation is proposed; then, the latest 
improved version of ε-constraint that is very 
efficient to solve multiple objective integer 
programming (MOIP) problems is applied.  
The rest of the paper is organized as follows: a 
comprehensive literature review is given in 
Section 2. Section 3 describes the problem and 
elaborates the mathematical formulation. In 
Section 4, a multi-objective optimization 
method is presented. Section 5 reports the 
computational results. Finally, Section 6 
presents the conclusion and future research.  
 

2. Literature Review 
This section reviews the related literature on 
the location-routing problems, specifically 
those having studied LRP modelling extensions 
such as multiple echelons, multiple periods and 
time windows, cash-in-transit (CIT) sector and 
its associated transportation risk, and MOIP 
solution approaches.  
The location-routing problems (LRP) represent 
a special case of vehicle routing problem 
(VRP), where both strategic decision (e.g., 
optimal number and location of depots) and 
tactical one (e.g., commodity flow and vehicle 
type) are determined simultaneously preventing 
sub-optimality caused by the separated 

consideration [3]. Watson-Gandy and Dohrn 
[4] clearly studied this problem for the first 
time in 1973 and, from that time onwards, it 
has been extending in various forms by both 
researchers and practitioners. There are 
numerous types of variants and characteristics 
in LRP. However, taking the lately published 
review articles into account [5, 6], researchers 
do try to consider as many variants and 
constraints as possible making the model more 
realistic and applicable. For instance, some 
researchers (e.g., [7], [8], [9] and [10]) studied 
capacitated LRP (CLRP) where vehicles and/or 
depots have a limited capacity of store goods. 
Another type of such a problem can be 
obtained by adding a multi-period horizon to 
the typical LRP called multi-period/periodic 
LRP (PLRP), in which either periodic delivery 
of time-sensitive shipments is related to each 
customer (e.g., [11] and [12]) or depots can be 
open/closed in a subset of time periods (e.g., 
[1]). A time-window constraint, which has 
gained more attention by researchers recently 
(e.g., [13], [14] and [15]), is another more 
complex real-life routing problem variant; in 
this respect, either delivery loaded on a vehicle 
should be made within an allowable time 
window or a vehicle should return to the 
depot/parking space within a pre-defined time 
window. Another very important characteristic 
in routing problem is multiple-echelon (NE-
LRP) which has very newly attracted the 
interests of researchers. NE-LRP, judging from 
the number of publications of the last decade 
and the review paper proposed by Drexl and 
Schneider [16], is of the most important LRP 
modelling extensions.  
Two-echelon LRP (2E-LRP) is a special case 
of NE-LRP in which the network is composed 
of two echelons and three stages including 
depot, intermediate facilities, and customers 
and, typically, available commodities at depots 
should be delivered to the customers moving 
compulsory through intermediate facilities. The 
first effort in 2E-LRP dates back to 80s by 
Jacobsen and Madsen [17]. After that, Madsen 
[18] and Laporte [19] studied the 2E-LRP in 
which the location decision in the intermediate 
facilities and routing in both echelons was 
made. The most studied member of the class of 
2E-LRP is the 2E-capacitated LRP (2E-CLRP) 
[20] which has been recently found in few 
papers (e.g., [21], [22], [23] and [24]). Nguyen 
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[25, 26] proposed a special case of 2E-CLRP in 
which only a single depot with a pre-known 
location exists in the model (2E-CLRPSD). 
Simultaneous pickup and delivery is one other 
variant in routing problem (e.g.,[27]). Rahmani 
et al. [28] proposed a new extension of 2E-
LRP, having multiple products with pickup and 
delivery (LRP-MPPD-2E) and, then, used a 
clustering-based approach to solving the 
problem. Vidovi et al. [29] developed a 
mathematical modelling for a 2E-LRP in the 
application of non-hazardous recyclables 
collection with profit and distance-dependent 
collection rates.  
The research papers cited above mainly applied 
the LRP in distribution of goods such as food, 
document/parcel delivery and waste collection, 
corroborating the wide applicability of the LRP 
models in practice. However, the LRP can also 
be used in distribution of valuable goods such 
as banknotes and coins which are highly 
exposed to the risk of being robbed. Recently, 
the issue of “increased security”, equivalent to 
“reduced risk”, during the transportation of 
valuable products (i.e., cash) has increased 
significant attention in academic world to cope 
with the real-life problems. A peripatetic 
routing problem was proposed by Krarup [30] 
to improve the security of transportation so that 
customers can be visited for more than one 
time within a planning horizon; however, the 
same road segment cannot be used more than 
once. Calvo and Cordone [31] presented the 
“unpredictable” routes by generating numerous 
solutions through defining particular time 
windows with a minimum and maximum time 
lag between two consecutive visits of the same 
customer. Yan et al. [32] introduced a different 
unpredictability approach that incorporates a 
new concept of similarity for routing problems 
by taking both time and space measures into 
account. Talarico et al. [33] proposed an index 
of global route risk, namely the maximum 
exposure to risk, to model the problem of 
routing vehicles in the CIT sector by 
introducing a variant of the renowned 
capacitated VRP. They presented a risk index 
associated with a robbery proportional both to 
the amount of cash carried by vehicle and 
time/distance covered by the vehicle 
transporting the cash. Lately, Kahfi and 
Tavakkoli-Moghadam [34] proposed a route 
risk index between each of two consecutive 

nodes which is a number between 0 (no risk) 
and 1 (highest risk). To calculate this, they 
used the subjective opinion of experts 
considering the weighted criteria such as road 
type (high way, street, alley, etc.), allowed 
traffic type (one-way or two-way), street width, 
and street traffic. They formulated the model 
with few constraints and, then, applied it to a 
real-case problem. 
Another important characteristic of real-life 
LRPs is that DMs, very often, have to 
simultaneously manage several objective 
functions and those are usually in conflict with 
each other. The above-mentioned studies deal 
with a single-objective function focused on 
economic aspects. However, the contribution of 
papers in the LRPs having considered multiple 
objectives is small and, to the best of our 
knowledge, there is no research paper in the 
area of 2E-LRP in CIT sector with more than 
one objective. Govindan et al. [35] and 
Ghezavati and Beigi [36] proposed a bi-
objective in 2E-LRP. The former formulated a 
nonlinear mathematical model and, then, 
presented a hybrid metaheuristic optimization 
approach called MHPV to solve the problem, 
and the latter formulated a linear mathematical 
model and used non-dominated sorting genetic 
algorithm (NSGAΙΙ) as a metaheuristic solution 
approach. Connecting to the CIT routing 
problem with more than one objective function, 
Talarico et al. [37] and Kahfi and Tavakkoli-
Moghaddam [34] presented bi-objective 
models in a single echelon and single period to 
minimize total travel cost and maximize secure 
vehicle routes. Talarico et al. [37] applied a 
novel metaheuristics technique named PMOO, 
including both multi-objective optimization 
and multi-criteria decision making into a single 
metaheuristic algorithm. Kahfi and Tavakkoli-
Moghaddam [34] used two meta-heuristic 
approaches, including multi-objective bath 
algorithm (MOBA) and NSGAΙΙ, to solve the 
problem. 
Considering the lately exhaustive literature 
review papers on LRP [11, 16], VRP [5, 6, 16, 
38] and specifically 2E-LRP [20], the 
following points can be suggested as 
conclusions: 
 Less than 9% of the related papers have 

considered at least three constraints (e.g., 
capacity of vehicles, heterogeneous fleet of 
vehicle, time windows, periodic VRP, pickup 
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and delivery, split delivery, etc.) in their 
routing problems simultaneously [6, 38], 
while some particular variants such as 
periodic VRP can hardly be seen. 

 Small percentage of papers on VRP and LRP 
have considered multi-objective functions [1, 
5, 6, 11, 16, 20, 38]. Having a more 
meticulous outlook, about 89% of routing 
papers considering only one optimization 
objective mainly concentrated on economic 
aspects [38]. Besides, the number of papers 
with numerous objective functions in 2E-LRP 
is very rare [20]. 

 About 31% of related papers used exact 
methods and, instead, others proposed 
heuristics or metaheuristics to solve the 
problem [38]; however, due to the maturity of 
existing exact and heuristic/metaheuristic 
methods and a plethora of new hybrid 
methods of such approaches, researchers are 
able to cope with larger instances in exact 
solution approaches rather than those 
previous ones [6, 16].  

 There is a meaningful trend towards 
considering more comprehensive and 
integrated problems by taking numerous real-
life variants into account to make models 
more practical, even though formulation and 
solution of such rich problems are, in turn, 
more difficult [5, 6, 16, 38].  

Therefore, the main goal of this paper can be 
summarized as follows: 
 Proposing a special case of 2E-LRP in a cash-

in-transit sector combining multiple real-life 
variants, such as multi-echelon, multi-period, 
capacitated vehicles and distribution centers, 
different time windows and different conflict 
objective functions, to tackle realistic 
problems. Then, a mathematical mixed-
integer linear programming for this rich LRP 
is formulated. To the best of our knowledge, 
this is the first mandatory step to apply the 
model in real-life problems and, on the other 
hand, a model with just few constraints even 
with the best solution approaches cannot be 
applicable to real-world problems. 

 Exploiting a solution approach for optimizing 
the multi-objective mixed integer linear 
problem with large integer coefficients in 
order to find the location and number of 
intermediate facilities among candidate ones, 
the number of vehicles in each type and 
echelon, the amount of commodities received 

from the Central Bank and delivered to open 
logistics center and bank branches/ATMs. 
 

3. Problem Description and Mathematical 
Model 

In classical 2E-LRP, a vehicle picks up the 
freight from the first stage (i.e., depots) and 
delivers it to the second stage (i.e., intermediate 
facilities) where operations such as storage, 
integration or consolidation occur and, then, 
return to its origin. Then, another vehicle starts 
its tour from the second stage and returns to its 
origin after delivering the freight to the third 
stage (i.e., customers).  
Cash distribution in the banking sector for 
satisfying the customers’ needs of physical 
currency such as coins and banknotes is a 
special case of 2E-LRP with various variants in 
routing coupled with numerous assumptions 
and constraints as well as ordinary concerns of 
the transportation cost and risk. In this 
problem, as illustrated in Fig. 1, a vehicle tour 
is started from the second stage at a distribution 
center (called also logistics center), instead of 
movement from the first stage. In the first 
echelon, an empty armored vehicle named 
primary vehicle located in one of the candidate 
logistics centers moves directly to the Central 
Bank, which is a pre-known single location in 
the first stage, receives the physical currency, 
and returns to the origin after distributing 
among intermediate facilities. In the second 
echelon, another armored vehicle called 
secondary vehicle transports the commodities 
to the customers (bank branches/ ATMs) and 
returns to the original logistics center. This 
operation takes place daily with respect to the 
many constraints such as capacity and time 
window (detailed assumptions are given in 
subsection 3.1).  
To benefit from formulation of such a real-
world problem and make it more applicable, 
initially, a comprehensive mathematical model 
that simultaneously considers all variants and 
characteristics, such as discrete time periods, 
heterogeneous fleets, capacitated vehicles, and 
different time windows, is required. Thus, this 
paper proposes a mathematical programming 
for a rich problem of multi-echelon, multi-
period, capacitated single depot location-
routing problem with time windows, and 
different conflict objective functions (BO-2E-
PCLRPSD-TW, from now on). This research 
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also aims to find the location and number of 
intermediate facilities among candidate ones, 
the amount of commodities received from the 
Central Bank and delivered to facilities in each 
period, and the best routes providing the 
minimum transportation cost and risk.  
 

 
Fig. 1. The structure of 2E-LRP in CIT 

sector 
 
The BO-2E-PCLRPSD-TW is defined in a 
graph G=(N, A), where N is a set of nodes and 
A is a set of arcs. The node set N is composed 
by a set of Central Bank, {0}, candidate 
logistics centers, l, and bank branches/ATMs as 
customers, c. Set N is partitioned into {N1, N2}, 
where N1 is a set of Central Bank and candidate 
logistics centers in the first echelon and N2  is a 
set of candidate logistics centers and customers 
in the second echelon.  ܣ = {(݅, ݆):	݅, ݆ ∈ ܰ} is 
the set of arcs. Each arc (i, j) has a nonnegative 
cost cij mainly based on the real distance 
between i and j. 
In this regard, assumptions, indices, 
parameters, and variables used in the proposed 
model are as follows:  
 
3-1. Assumption 
 Number of customers and their demands in 

each period are known; 
 Each customer is visited at most once in 

each time period; 
 Customer c may have demands in each 

period; 
 Demands of customers must be satisfied; 

 There are different types of vehicles with 
different capacities belonging to each 
specific echelon. Cash should be delivered 
to the ATMS in banknote boxes requiring 
more space and, in turn, occupying larger 
space of vehicles; 

 Only one vehicle is used in each route to 
serve the open logistics center or customer 
needed to be served; 

 Primary facility cannot send goods directly 
to the customers; 

 A stretch of each period is considered daily 
over a five-day planning horizon; 

 In the first echelon, trip must begin/end at 
the same open logistics center so that an 
armored vehicle can move from logistics 
center l to the Central Bank, receive cash, 
and return to its origin. In this tour, after 
visiting a central bank and before returning 
to the origin logistics center, other logistics 
facilities can be visited; 

 Second echelon trip must begin/end at same 
open logistics center while distributing the 
banknote to the customers; 

 Time windows of all nodes should be 
respected; 

 Intermediate facilities have different time 
windows in the first and second echelons; 

 Each type of vehicles has its limited 
capacity; 

 Each logistics center has a limited capacity 
of cash handling; 

 Each logistics center has a limited number 
of parking spaces for vehicles; 

 There is no need to use all vehicles in each 
period; 

 Shortage is not allowed; instead, storage is 
allowed; 

 The commodity cannot be moved from 
Central bank to the customers directly; 

 The average duration and cost between arc 
(i, j) are known. 

 
3-2. Indices   

Set of vehicle type, k= {1, …, K} k 

Set of number of vehicles with type k, mk= {1, …, Mk} mk 

Set of candidate Logistics center, l= {1, …, L} l 

Set of customers, c= {1, …,C} c 

Set of length of planning horizon with discrete time period, l= {t, …,T} T 
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3-3. Parameters 
Opening cost of Logistics center l 

lON
 

Average cost of travelling from node i to node j 
ijc

 
Operation cost of each vehicle of type k  kOV  

Opportunity cost in time period t 
tOC

 
Risk of travelling from node i to j 

ijr
 

Capacity of each vehicle of type k  kQ
 

Capacity of commodity handling in Logistics center l 
lHC

 
Capacity of inventory holding at each bank branch/ATM as customer c 

cCAP
 

Parking capacity of each logistic center l (fleet size) 
lPC

 
Average travel time from node i to node j in time period t 

ijttt
 

Average service time for each node i in time period t 
itst

 
Demand of customer c in time period t 

ctd
 

Time window constraint for node i in the first echelon in time period t  ,it itef lf  
Time window constraint for node i in second echelon in time period t  ,it ites ls  
Maximum number of opened Logistics centers 

maxL
 

3-4. Decision variables  
Binary variables are as follows: 

11 if vehicle m  of type k traverses arc ( , ) Ν  
in time period t

0 otherwise

k i j 
 



 
km k

ijtx  

1 if vehicle  of type  visit Logistics center  
in the first echelon in time period 

0 otherwise

km k l L
t


 

  

km k
ltf  

21 if vehicle  of type k traverses arc ( , )  in 
time period 

0 otherwise

km i j
t


 

  

km k
ijth  

1 if vehicle  of type  visit customer  in the 
second echelon in time period 

0 otherwise

km k c C
t


 



 
km k

ctg  

1 if Logistics center  is opened
0 otherwise

l
 
  

ly
 

1 if Logistics center  serves customer in time 
period 

0 otherwise

l c
t


 

  

lct  
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Other decision variables: 
The amount of commodity delivered to secondary facility (Logistics center) l by vehicle mk of 
type of k in time period t 

km k
lt  

The amount of commodity delivered to customer c by vehicle mk of type of k in time period t km k
ct  

Inventory level at secondary facility l at the end of period t ltI  
Inventory level of customer c at the end of period t ctI  
Arrival time of each primary vehicle to node ݅ ∈ ଵܰ in time period t km k

ittf
 

Arrival time of each secondary vehicle to node  
 ݅ ∈ ଶܰ in time period t 

km k
itts

 

3-5. Mathematical formulation  
Regarding these notations, the BO-2E-PCLRPSD-TW is formulated as follows: 

(1) 

1 11

0
2 2 1 12

2 2

1

,

,

(

( ))

k

ijt
k K

k k

ijt l t
k K k

k

lct
k K

k K

k K

m k
l l ij

l L t T m M i j N

m k m kk
ij

m M i j N l L k K m K

m kk
t lt ct

l L c C k K m M l L c C

MinZ

ON y c x

c h OV x

OV h OP I I





   

    

     





 

  





   

   

   

 

(2) 1 21 21 2

2

, ,
( )k k

ijt ijt
k K k Kk K k K

m k m k
ij ij

t T m M i j N m M i j N

Min Z

r x r h
     



     
 

 subject to  

(3) 
2

2 2

2, , ,;k k km k m k m k
ict cjt ct k K

i N j N
c m M k K t Th h g C

 

     
 

(4) 2 22

; ,1k

k K

m k
ict

k K m M i N
i c

c C t Th
  



    
 

(5) 
2 2; , ,1km k

ijt k K
i L j C

m M k K t Th
 

   
 

(6) 2 2

; ,k

k K

m k
lct l

c C k K m M
M t Th y l L

  

   
 

(7) 2 2

; ,1 (1 )k

k K

m k
lct l

c C k K m M
M t Th y l L

  

     
 

(8) 2 2; , , ,,km k
clt lct k Kl c m M k K t Th L C        

(9) 2 2; , , ,,km k
lct lct k Kl c m M k K t Th L C        

(10) 2 2

; , , , ,

, ,

2 ,km k
ijt lit l jt

l L
l l

k K

l l i j i j

m M k K t T

h L C  



    

  

 
 

(11) 
; ,1lct

l
c t TC   

 

(12) 2 2

1 ; ,
, ,

2,km k
ijt

i C j C
k K

C
m M k K t T

h C C C
  

  
  

   
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This problem involves two-conflict objective 
functions simultaneously: (1) minimization of 
total cost and (2) minimization of 
transportation risk. The objective function (1) 
measures the total cost of the model composed 
of six parts. The first term is the effective cost 
of opening logistics centers over a planning 
horizon. The subsequent two terms are 
transportation costs in the first and second 
echelons, respectively. The fourth and fifth 
summations are associated with total operation 
cost of vehicles in case of using in each period. 
The final term denotes the opportunity cost 
regarding the inventories in logistics centers 
and bank branches/ATMs. The objective 
function (2) minimizes the total transportation 
risk in both echelons. 
Constraints (3) to (20) are associated with the 
second echelons. In constraint (3), flow 
conservation for each customer in each time 
period is expressed. Constraint (4) ensures that 
each customer visits at most once in each day. 
Inequality (5) imposes a limitation that each 
armored vehicle in the second echelon leave, at 
most, one logistics center. Constraints (6) and 
(7) assure that if a candidate logistics center is 
open, at least one vehicle moves from that 
facility center toward a customer. Three 
inequalities (8)-(10) forbid illegal routes in the 
second echelons which do not start and end at 
the same logistics center, and guarantees that a 
vehicle returns to its distribution center of 
origin. Constraint (11) enforces that a customer 
is assigned to a single logistics center. Sub-tour 
elimination in the second echelon is expressed 
in inequality (12). Constraints (13)-(16) are 

related to capacity inequalities. Constraint (13) 
prohibits delivering of commodity by vehicle 
mk of type k to a customer if such a vehicle 
does not visit that customer. Constraint (14) 
guarantees that the total amount of 
commodities carried by a vehicle should not 
exceed the vehicle capacity.  Constraint (15) 
expresses that if a logistics center is closed, no 
customer is assigned to it; otherwise, the 
customers’ total required commodities satisfied 
by an open logistics center should respect the 
handling capacity of the origin. Capacity 
inequality associated with the inventory held in 
each bank branch/ATM is expressed in 
constraint (16), and, inventory balance of each 
customer in each time period is described in 
equation (17). Constraints (18) and (19) state a 
relationship between the arrival times of a 
secondary vehicle at consecutive stopes in a 
tour. Constraint (20) imposes the time window 
restrictions on any node in the second echelon. 
Constraint (21) assures that the total number of 
vehicles used in both first and second echelons 
should not exceed the capacity of parking 
spaces at each logistics center. The remaining 
constraints are associated with the first echelon.  
Constraints (22) show the flow conservation at 
each logistics center in each time period. 
Constraint (23) imposes a limitation that if a 
vehicle moves the logistics center toward the 
Central Bank, it must return to the original 
location while it also can serve other logistics 
centers. Inequality (24) ensures the sub-tour 
elimination in the first echelon. Constraints 
(25) and (26) require that if a candidate 
logistics center is open, at least one vehicle 
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enters to that facility center. The maximum 
number of logistics center to be opened is 
given in constraint (27). Constraints (28)-(29) 
are related to the vehicles capacity, and 
constraint (30) is associated with the handling 
capacity in the first echelon. The former 
inequality imposes a restriction such that, in 
each time period, if no vehicle visits a logistics 
center, consequently, no commodity is 
delivered to that intermediate facility center. 
Constraint (29) states the total amount of 
commodities delivered from Central bank 
should not exceed the vehicle capacity. 
Constraint (30) assures that if a logistics center 
is open, the total amount of commodities 

delivered to that facility center should respect 
its handling capacity. Equation (31) imposes 
the inventory balance of each logistics center in 
each time period. Constraints (32) and (33) 
state a relationship between the arrival times of 
a primary vehicle at two consecutive nodes, 
and inequality (34) ensures that a vehicle 
should reach at any node within an allowed 
time window. Finally, Constraint (35) to (38) 
specify a range of the variables. 
Formulation is nonlinear because of constraints 
(31). However, the constraint can be rewritten 
using a set of linear constraints as follows: 
 Linearizing constraint (31): 
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The goal is to simultaneously minimize the 
total travel cost and reduce the relative total 
risk of vehicle routes.  
 
4. Multi-Objective Optimization Method 

In the multi-objective optimization problem 
(MOOP), there is no single optimal solution 
being able to optimize all the objective 
functions concurrently; instead, there are 
several objective functions and DMs should 
find the “most preferred” solution. The Pareto 
optimal solutions (named also non-dominated, 
non-inferior, efficient solutions) are ones with 
the property that it is impossible to improve the 
value of one objective function without 
weakening the performance of at least one 
other objective function. The small number of 
efficient solutions produces the trade-off 
surface or Pareto front; under such 
circumstances, the DM should intervene to 
make the best compromise solution among the 
presented efficient solutions.  
Exact methods can be categorized into three 
following classes in which DMs can interfere 

and express the preferences over the objectives 
[Hwang-MO]:  
 Priori methods: the DMs give the 

preferences (i.e., weights) in advance.  
 Interactive methods: the DMs preferences 

are expressed during the solution procedure. 
 Generation/Posteriori methods: the DMs 

express their preferences after discovering 
the Pareto set. 

In the first two methods, DMs are called to 
express the preferences while they do not have 
the Pareto front; however, generation methods 
deal with this issue and, after having the 
required information, the DMs make the 
ultimate choice.  
Among several classical generation methods 
being able to solve MOOPs by generating 
representations of the Pareto front, the 
weighted sum and the ε-constraint methods are 
the most famous techniques. However, the 
latter outperforms especially in the problems 
with discrete variables in the pure integer or 
mixed integer problems. One of the 
superiorities is that there is no need to provide 
scaling of the objective functions that can 
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affect the results in the ε-constraint method, 
while any method summing up diverse 
objectives requires scaling factors, even though 
the variables are normalized. The interested 
reader is referred to [39]. 
 

4-1. AUGMECON2 method 
One of the best approaches to solving multi-
objective problems is the ε-constraint method 
[40]. In this method, typically, the objective 
function with the high priority is considered as 
an objective function, and the rest must be 
transformed to equalities by considering a 
constraint vector ε. The classical ε-constraint 
method has three weak points in its 
implementation that is addressed in new 
version named AUGMECON as follows [39]: 
 The calculation of the range of the objective 

functions over the efficient set: in the 
ordinary method, the best value is 
considered as the optimal value of the 
separate optimization, and the nadir value is 
approximated with the worst of the 
corresponding column; however, 
AUGMECON benefits from the 
lexicographic optimization to create the 
payoff table with only Pareto-optimal 
solutions.  

 The guarantee of efficiency of the obtained 
solution: to do so, by combining the 
appropriate slack/surplus variables, the 
objective function constraints are converted 
into model constraints. Such slack/surplus 
variables are used as the second term, with 
lower priority in a lexicographic manner, in 
the objective function, imposed to provide 
only efficient solutions. 

 The increased solution time for problems, 
especially in problems with more than two 
objective functions: it is addressed by 
incorporating acceleration issues (i.e., early 
exit from the loops).  

AUGMECON2 is the improved version of the 
augmented ε-constraint [41]. This method, by 
introducing a bypass coefficient, outperforms 
the previous version, especially in the larger 
data set with larger integer coefficients for the 
objective functions. The AUGMECON2, 
specifically, provides the exact Pareto set in 
multi-objective integer programing problems 
by properly tuning its running parameters. Not 
only is this one of the best available exact 
methods able to solve the MOOPs, but also it  
is competitive with multi-objective meta-

heuristics (MOMH) methods to produce 
adequate approximations of the Pareto set in 
multi-objective combinatorial optimization 
(MOCO) problems, especially in small- and 
medium-sized instances [41]. The following 
steps are required to apply the AUGMECON2 
in our MOIP problem: 

(43) 
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where ݁ଶ ,…, ݁௣ are the parameters for the 
right-hand side (RHS) of the specific iteration 
on the grid points of the objective functions 2, 
3, …, p. Parameters ݎଶ,…, ݎ௣  are the ranges of 
the respective objective functions. The slack 
variables of the respective ε-constraints are 
ܵଶ,…, ܵ௣ and the eps ∈ [10ି଺, 10ିଷ]. This 
modification in the objective function, 
compared to AUGMECON, is added to 
produce a lexicographic order in the rest of the 
objective functions, if there is any alternative 
optima. This formulation forces the sequential 
optimization. To delineate, a solver will find 
the optimal solution for ଵ݂ and then it will try 
to optimize ଶ݂ and so on, while the sequence of 
optimizations of ଶ݂ − ௣݂ in the previous 
formulation was indifferent. 
For each objective function i=2,…,p, the 
objective function range is calculated as the 
difference between the best and worst values of 
the payoff table. Then, the range of the ith 
objective function is divided into ݍ௜ equal 
intervals; thus, there would be total (ݍ௜ + 1) 
grid points used to vary parametrically the RHS 
݁௜ of the ith objective function. Therefore, the 
discretization step for this objective function is 
given as follows: 
 

(44) 
i

i
i

rstep
q


 

 

The RHS of the corresponding constraint in the 
tth iteration in the specific objective function 
will be as Eq. (45), where ௜݂

௠௜௡  is the worst 
value from the payoff table and t is the counter 
for the specific objective function: 
 

(45) 
min ( ) 0,...,

i i

t
i ie f step t t q     

In each iteration, a slack variable that 
corresponds to the innermost objective function 
is checked. In this case, it is the objective 
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function with p=2. After that, the bypass 
coefficient is calculated as follows: 
 

(46) 
2

2

int( )Sb
step


 

 

In the right-hand side of equation (46), int() is 
an integer part of a real number. When the 
slack variable ܵଶ  is larger than ݌݁ݐݏଶ , in the 
following iteration, the same solution will be 
obtained and the only difference is the surplus 
variable which will have value ܵଶ − ଶ݌݁ݐݏ . 
Thus, to avoid the iteration redundant, it can be 
bypassed as no new Pareto optimal solution is 
generated. Bypass coefficient b specifies the 
number of bypassed consecutive iterations. 
With this approach, AUGMECON2 method 
significantly improves the solution time, 
especially when there are many grid points 
[41]. 

 
5. Computational Results 

This paper proposes a complex model and a 
MMILP formulation for a real-life model . To 
demonstrate the validity of the proposed rich 
problem and the formulation, a numerical 
experiment is presented and the related results 
are shown in this section. We used data stem 
from a real-world case in one of the Iranian 
banks for distribution of currency banknotes to 
some branches located in Tehran. Tab. 1 shows 
the size of this problem. Moreover, to calculate 
the risk between nodes, a risk route calculation 
method proposed in [34] is applied. Finally, 
parameters ௜ܿ௝	and ݐ௜௝௧ are calculated based on 
the real data.  
All of the mathematical formulas have been 
coded in GAMS (General Algebraic Modeling 
System) and the experiments have been 
performed on an Intel core i5-3337U, 1.8 GHz 
processor with 6 GB RAM.  
 

Tab. 1. Size of the sample tests 
Scale of problem  Test 

1 
Test 
2 

Test 
3 

No. nodes in the first stage 1 1 1 
No. nodes in the second stage 3 3 3 
No. nodes in the third stage 10 12 13 
No. periods (days)  5 5 5 
No. vehicle types in each 
echelon 

2 2 2 

No. vehicles in each type in 
each echelon 

2 2 2 

To analyze the formulation and the solution 
method, results of test problem 1 are analyzed 
in this section. Firstly, the real distance and 
travel time for travelling an armored vehicle 
from node i to node j and its associated 14*14 
matrix are calculated based on the real data by 
using Google Map travel distance/time matrix 
API. Fig. 2 shows the output of the coding for 
such routes for the first echelon on the google 
map. For example, the real distance and travel 
time of matrix element associated with a route 
between the Central Bank and the third 
candidate logistics center (l3) are 13.6 km and 
34 minutes, respectively. 

 

 
Fig. 2. A visualization of Google Map 

API and the real travel time/distance among 
nodes in the first echelon 

 
Then, using the AUGMECON2, the Pareto 
fronts are obtained. Fig. 3 illustrates the results 
and demonstrates the conflict between two 
objective functions value so that, with 
decreasing the value of the first objective 
function (i.e., total cost), the second objective 
function’s (i.e., total transportation risk) value 
is increased, and vice versa. One of the 
obtained solutions in terms of routes in two 
echelons is shown schematically in Fig. 4, 
which proves the validity of formulation in a 
proper allocation of facilities to the customers 
as well as legal tours regarding constraints such 
as start/end points in each echelon, continuity 
of the routes, and avoided sub-tours. Fig. 4(a) 
depicts the position of all nodes before solving 
the location-routing (LR) problem, and 4(b) to 
4(f) illustrate the solution after solving the 
problem over a five-day planning horizon. 
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Fig. 3. The Pareto frontiers for test 

problem 1 
 

 
(a) before LR (b) After LR- Day 1 

 

(c) After LR- Day 2 (d) After LR- Day 3 

 

 

(e) After LR- Day 4 (f) After LR- Day 5 
Fig. 4. A schematic view of routes in one of 
the obtained solutions for test problems 1. 

 
Decision-makers, at this point, should select 
the ultimate solution among all Pareto solutions 
considering other probable criteria that are 
impossible to be calculated. Furthermore, in 
unforeseeable circumstances such as blocking 
some routes, it is possible for DMs to choose 
one other solution with different routes. 
 

6. Conclusion and Future Research 
In this paper, a special case of 2E-LRP in a 
cash-in-transit sector was proposed. Taking the 
exhaustive literature review papers [5, 6, 16, 
38] into consideration, there is a significant 
trend among researchers to formulate 
comprehensive and integrated problems to 
make it more applicable, instead of focusing on 
sophisticated solution methods for problems 
containing just few constraints. We adopted 
this approach and proposed a special case of 
2E-LRP in the CIT sector, named BO-2E-
PCLRPSD-TW, considering several existing 
real-life variants simultaneously such as multi-
echelon, multi-period, capacitated vehicles, 
distribution centers and ATMs, different type 
of vehicles in each echelon, different time 
windows and different objective functions to 
tackle this realistic problem. In a CIT problem, 
distribution of physical currency with the 
minimum transportation cost and risk is of top 
priorities among managers. Thus, these two 
conflicting objective functions were used in our 
model and the rich and complex model in 
MMILP was formulated. To validate the 
suitable formulation and solve the model, the 
last improved version of ε-constraint named 
AUGMECON2 was used, which is a very 
efficient method for solving MOIP and 
provides the exact Pareto front. Results 
substantiate the suitability of the model and its 
formulation. Finally, there are some directions 
to improve this article in future research. The 
BO-2E-PCLRPSD-TW problem can be 
extended with other real-life variants such as 
forbidden region, route length restrictions, 
fuzzy/stochastic parameters, time-dependent 
networks, precedence relations, integration of 
locations and revenue management. Moreover, 
other risk indexes can be developed 
considering travel time between nodes, amount 
of commodities transferred by vehicles and 
peripatetic routes. At the end, even though 
AUGMECON2 is very competitive even with 
MOMH methods in small- and medium-sized 
problems, there is a need for heuristic or 
metaheuristic approaches for solving the 
problem in large-scale instances, making it a 
very complex problem.  
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